Analysis of kinetic isotope effects for nonadiabatic reactions.
نویسندگان
چکیده
Factors influencing the rates of quantum mechanical particle transfer reactions in many-body systems are discussed. The investigations are carried out on a simple model for a proton transfer reaction that captures generic features seen in more realistic models of condensed phase systems. The model involves a bistable quantum oscillator coupled to a one-dimensional double-well reaction coordinate, which is in turn coupled to a bath of harmonic oscillators. Reactive-flux correlation functions that involve quantum-classical Liouville dynamics for chemical species operators and quantum equilibrium sampling are used to estimate the reaction rates. Approximate analytical expressions for the quantum equilibrium structure are derived. Reaction rates are shown to be influenced significantly by both the quantum equilibrium structure and nonadiabatic dynamics. Nonadiabatic dynamical effects are found to play the major role in determining the magnitude of the kinetic isotope effect for the model transfer reaction.
منابع مشابه
Nonequilibrium H/D isotope effects from trajectory-based nonadiabatic dynamics.
Ground-state equilibrium kinetic isotope effects can be treated well in the framework of transition state theory, whereas excited-state nonequilibrium isotope effects are theoretically less explored. In this article we show for the first time that trajectory-based nonadiabatic dynamics simulations are able to reproduce experimental values for nonequilibrium H/D isotope effects in excited-state ...
متن کاملSteepest Descent Path Study of Electron-Transfer Reactions†
A nonadiabatic steepest descent path method is developed as a qualitative tool to analyze and characterize three different kinetic regimes of electron transfer. In this approach, Miller’s semiclassical instanton solution and Pechukas’ self-consistent treatment of nonadiabatic coupling are applied to the path integral representation of the two-state diffusion equation. The resulting steepest des...
متن کاملEnzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.
In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusi...
متن کاملDeuterium kinetic isotope effects in microsolvated gas-phase E2 reactions.
This work describes the first experimental studies of deuterium kinetic isotope effects (KIEs) for the gas-phase E2 reactions of microsolvated systems. The reactions of F(-)(H(2)O)(n) and OH(-)(H(2)O)(n), where n = 0, 1, with (CH(3))(3)CX (X = Cl, Br), as well as the deuterated analogs of the ionic and neutral reactants, were studied utilizing the flowing afterglow-selected ion flow tube techni...
متن کاملMolecular dynamics with quantum transitions for proton transfer: Quantum treatment of hydrogen and donor–acceptor motions
The mixed quantum/classical molecular dynamics with quantum transitions ~MDQT! method is extended to treat the donor–acceptor vibrational motion as well as the hydrogen motion quantum mechanically for proton transfer reactions. The quantum treatment of both the hydrogen and the donor–acceptor motions requires the calculation of two-dimensional vibrational wave functions. The MDQT surface hoppin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 8 شماره
صفحات -
تاریخ انتشار 2006